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Abstract 

A new algorithm is developed based on the two-fluid plasma model that 
is more physically accurate and capable than MHD (magnetohydrodynamic) 
models. The algorithm uses high-order spatial and temporal accuracy to simu- 
late timc-dcpcndcnt, three-dimensional plasma phenomena. High-order spatial 
accuracy is accomplished using a discontinuous Galerkin finite clement method 
that has provided up to 161'1 order accuracy. The temporal evolution is ad- 
vanced using a 3rd order Runge-Kutta method. The numerical fluxes are cal- 
culated using an approximate Riemann solver based on the two-fluid plasma 
model. The source terms of the two-fluid plasma model couple the electron and 
ion fluids to the electromagnetic fields. The simultaneous solution and evolu- 
tion must be tightly coupled to prevent unstable numerical oscillations. Elec- 
t romagnetic fields are solved by both formulating Maxwell's equations as per- 
fectly hyperbolic equations and by using a mixed potential formulation which 
automatically satisfies the divergence constraint relations. Asymptotic approx- 
imations arc1 individually applied to the two-fluid plasma model to approach the 
Hall-MHD plasma model. An improved method of plasma simulation is found 
by using the two-fluid plasma model with an artificially increased electron to 
ion mass ratio and decreased speed of light. Multiscale effects arc discovered 
in current-carrying plasma where small-scale electron instabilities lead to ion 
shocks that produce large-scale disruptions on the plasma. 

1     Executive Summary 
This project represents a three year effort to develop a new algorithm for plasma 
simulations based on the two-fluid plasma model. Current plasma simulation 
algorithms capable of complex geometries are based on the MHD (magneto- 
hydrodynamic) model. The derivation of the MHD model involves several 
assumptions that severely limit its applicability. The two-fluid model only 
assumes local thcrmodynamic equilibrium and is, therefore, more physically 



accurate and capable than MHD models. The two-fluid model is formulated 
in conservation form. An approximate Ricmann solver is developed for the 
two-fluid plasma model to compute the fluxes in a stable and accurate man- 
ner. Several methods arc investigated to solve the electromagnetic field model, 
which includes the source terms and divergence constraints. These methods 
include a characteristic-based algorithm, a perfectly hyperbolic modification, 
and a mixed potential formulation. The two plasma fluids and the electro- 
magnetic fields communicate through the source terms. The fluid momentum 
and energy equations have source terms that depend on E and B. The elec- 
tromagnetic equations have source terms that depend on v, and ve (Ampere's 
law) and ri( and ne (Gauss's equation). Accurately coupling the source terms 
is important both for numerical stability and for modeling plasmas where large 
equilibrium forces exist. 

An algorithm is developed for the complete two-fluid plasma model ini- 
tially in one dimension. The algorithm uses a Roc-type approximate Riemann 
solver [1] to discretize the hyperbolic fluxes of the fluid model and an upwind 
characteristic-based solver for the electromagnetic fields. Simulations from the 
resulting finite volume algorithm are benchmarked against known analytical 
results. Furthermore, the algorithm is applied to the electromagnetic plasma 
shock problem to reveal the transition from gas dynamic shock to MHD shock. 
The results are analyzed to reveal the fast plasma waves that arc captured in 
the two-fluid plasma model. [2] 

A high-order algorithm is developed that uses a discontinuous Galerkin, fi- 
nite clement method for the spatial representation and a TVD Rungc-Kutta 
method for the time advance. [3] Solutions arc found with up to 161'1 order spa- 
tial accuracy and 3rd order temporal accuracy. The two-fluid plasma algorithm 
is used to model multiscalc physics of current-carrying plasmas, such as the 
Z-pinch [4] and the field reversed configuration (FRC) [5]. These plasma con- 
figurations balance large equilibrium forces between the plasma pressure and 
the electromagnetic pressure. The high-order algorithm is seen to significantly 
improve the ability to maintain equilibrium with no artificial decay. 

The divergence constraints of Maxwell's equations can be difficult to satisfy 
with the presence of current and charge sources on an arbitrary computational 
grid. The divergence constraints are satisfied by reformulating Maxwell's equa- 
tions to include correction potentials. The approach involves coupling the di- 
vergence constraint equations with the time-dependent field equations to form 
a perfectly hyperbolic equation set. [6] An alternative formulation of Maxwell's 
equations using mixed potential is also implemented. The mixed potential for- 
mulation automatically satisfies the divergence constraints. 

This project was performed by Prof. Uri Shumlak and graduate students 
Ammar Hakim, Robert Lilly, John Loverich, Bhuvana Srinivasan, and Andrce 
Susanto. This project resulted in doctoral dissertations and master thesis: 

• John Loverich,   "A Discontinuous Galerkin Method for the Two-Fluid 
Plasma System and Its Application to the Z-Pinch", Ph.D. 2005. 



• Ammar Hakim, "High Resolution Wave Propagation Schemes for Two- 
Fluid Plasma Simulations", Ph.D. 2006. 

• Bhuvana Srinivasan, "A Comparison between the Discontinuous Galcrkin 
Algorithm and the High Resolution Wave Propagation Algorithm for the 
Full Two-Fluid Plasma Model", M.S. 2005. 

These dissertations and theses can be obtained from the University of Washing- 
ton library system or from the project website, http://www.aa.washington.edu/cfdlal> /. 
Archival journal and conference papers were published reporting on the work 
from this project: 

• J. Lovcrich and U. Shumlak, "A discontinuous Galcrkin method for the 
full two-fluid plasma model", Computer Physics Communications 169 
251-255 (2005). 

• A. Hakim, J. Lovcrich, and U. Shumlak, "High resolution wave propaga- 
tion scheme for ideal two-fluid plasma equations", Journal of Computa- 
tional Physics 219 (1), 418-442 (2006). 

• J. Lovcrich and U. Shumlak, 'Non-linear two-fluid study of m=0 sausage 
instabilities in an axisymmetric Z-pinch", Physics of Plasmas 13, 082310 
(2006). 

• A. Hakim and U. Shumlak, "Two-fluid physics and field-reversed config- 
urations", Physics of Plasmas 14, 055911 (2007). 

2    Project Results 
Plasmas are essential to many technologies that arc important to the Air Force, 
some of which have dual-use potential. These applications include portable 
pulsed power systems, high power microwave devices, drag reduction for hyper- 
sonic vehicles, advanced plasma thrusters for space propulsion, nuclear weapons 
effects simulations, radiation production for counter proliferation, and fusion 
for power generation. In general, plasmas fall into a density regime where they 
exhibit both collective (fluid) behavior and individual (particle) behavior. The 
intermediate regime complicates the computational modeling of plasmas. 

2.1    Plasma Models Kinetic,  PIC, MHD, Two- 
Fluid 

Plasmas may be most accurately modeled using kinetic theory. The plasma is 
described by distribution functions in physical space, velocity space, and time, 
/(x, v,t). The evolution of the plasma is then modeled by the Boltzmann 
equation. 

at ox      m„ u\        at (1) 
collisions 



for each plasma species a — ions, electrons. The Boltzmann equation cou- 
pled with Maxwell's equations for electromagnetic fields completely describe 
the plasma dynamics. [7-9] However, the Boltzmann equation is seven dimen- 
sional. As a consequence of the large dimensionality plasma simulations using 
the Boltzmann equation arc only used in very limited applications with narrow 
distributions, small spatial extent, and short time durations. [10,11] The seven 
dimensional space is further exacerbated by the high velocity space that is un- 
used except for tail of the distribution or energetic beams. Boundary conditions 
are difficult to implement in kinetic simulations. 

Particle in cell (PIC) plasma model apply the Boltzmann equation to repre- 
sentative supcrparticlcs which arc far fewer (107) than the number of particles 
in the actual plasma (1020). [12] PIC simulations have similar limitations as 
simulations using kinetic theory due to statistical errors caused by the fewer 
supcrparticlcs. Boundary conditions arc also difficult to implement in PIC 
simulations. 

The other end of the spectrum in plasma model involves taking moments 
of the Boltzmann equation and averaging over velocity space for each species 
which implicitly assumes local thcrmodynamic equilibrium. The resulting equa- 
tions comprise the two-fluid plasma model. The two-fluid equations arc then 
combined to form the MHD model. [13] However, in the process several ap- 
proximations are made which limit the applicability of the MHD model to low 
frequency and ignores the electron mass and finite Larmor radius effects. 

The MHD model treats the plasma like a conducting fluid and assigning 
macroscopic parameters to describe its particlc-likc interactions. Plasma simu- 
lation algorithms based on the MHD model have been very successful in model- 
ing plasma dynamics and other phenomena. Codes such as MACH2 arc based 
on arbitrary Lagrangian/Eulcrian formulations. [14] ALE codes arc well suited 
for simulating plasma phenomena involving moving interfaces. [15] However, 
ALE codes cannot be formulated as conservation laws and lack many of the 
inherent conservative properties. The MHD model has been successfully im- 
plemented in conservative form to simulate realistic three-dimensional geome- 
tries. [16.17] 

A severe limitation of the MHD model is the treatment the Hall effect 
and dianiagnctic terms. These terms represent the separate motions of the 
ions and electrons. The Hall effect and diamagnetic terms also account for 
ion current and the finite ion Larmor radius. These effects are important in 
many applications such as electric space propulsion thrustcrs: Hall thrustcrs, 
magnctoplasmadynamic (MPD) thrustcrs, Lorcntz force thrustcrs. The Hall 
term is also believed to be important to electrode effects such as anode and 
cathode fall which greatly affect many directly coupled plasma applications. 
Furthermore, the Hall and diamagnetic effects may be important for hypersonic 
flow applications. [18] 

The Hall terms can be difficult to stabilize because they lead to the whistler 
wave branch of the dispersion relation. The phase and group velocities of the 
whistler wave increase with frequency.   The velocities become large even for 
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Figure 1: Dispersion relations for the two-fluid plasma model and for the Hall-MHD 
plasma model that results when asymptotic approximations are applied to the two- 
fluid plasma model. For small wave numbers and low frequencies (right plot), the 
upper branch of the Hall-MHD wave follows the R wave of the two-fluid model. 
However, the waves diverge and the Hall-MHD wave fails to follow the resonance 

at the cyclotron frequency. The wave speed grows without bound. Artificial hyper- 
resistivity is required to damp this branch of the Hall-MHD wave. 

modest values of the Hall parameter. Sec Fig. 1 for the dispersion diagram. 
A semi-implicit technique has been applied to treat the Hall term in a Hall- 

MHD model. [19, 20] After the hyperbolic terms of the MHD equations arc 
advanced, the Hall terms arc treated independently. The conserved variables 
arc then corrected. The procedure can be computationally intensive. The oper- 
ator stencil uses 5 points in the sweep direction and 3 points in each orthogonal 
direction. The complete operator stencil is 45 points. The semi-implicit method 
works adequately for small Hall parameters, but becomes unstable or slow to 
converge for the large Hall parameters often seen in applications. 

As mentioned above, the two-fluid plasma model is more complete than 
either the MHD or Hall-MHD model. The two-fluid plasma model resolves 
plasma oscillations and speed of light propagation. However, many applications 
arc adequately modeled by lower frequency dynamics. Asymptotic approxima- 
tions (me —• 0, c —> oo) have been applied to the two-fluid plasma model to 
eliminate the high frequency waves that limit the maximum numerical time 
step. Neglecting electron inertia removes the limitation due to the electron 
plasma and cyclotron frequencies. Infinite light speed removes the limitation 
due to light transit times. The asymptotic approximations reduce the two-fluid 
plasma model to the Hall-MHD model. However, applying these approxima- 
tions fundamentally changes the dispersion relation, as evident in Fig. 1, and 



introduces unphysical wave behavior. Specifically, the phase and group veloc- 
ities of a Hall-MHD wave increase without bound with wave number. The 
large wave speeds increases the stiffness of the equation system making accu- 
rate numerical solutions difficult. Furthermore, the maximum wave number is 
usually set by either the computational mesh spacing (kmax <x Ax) or by an 
artificial resistivity. Rigorous convergence studies are difficult with the simpler 
plasma models since decreasing A.x leads to larger kmax and shorter wavelength 
phenomena. 

2.2    Two-Fluid Plasma Algorithm 

The complexity of the two-fluid model is greater the MHD model hut signif- 
icantly less than the kinetic model. In this project a new algorithm is devel- 
oped that solves the two-fluid plasma model using an approximate Ricmann 
solver. [2] The method tracks the wave propagation across the domain based 
on conservation laws. 

The two-fluid plasma model captures the separate motion of the electrons 
and ions without the added complexity of the kinetic model. The two-fluid 
model is derived by taking moments of the Boltzmann equation for each species. 
The process of taking moments eliminates the velocity space and yields rep- 
resentative fluid variables (density, momentum, energy) for each species. The 
only approximation made is local thcrmodynamic equilibrium within each fluid 
and is, therefore, a generalization of the MHD model. The fundamental vari- 
ables arc generated by taking moments of the distribution function. 

The evolution of the particle density of the ions and electrons is expressed by 
continuity equations. The equations arc the zcroth moment of the Boltzmann 
equation. 

dni
+V.(>i)=0 (2) 

-0 (3) 

dt \q 

dne /j 

dt \e 

where n*, nc are the ion and electron number densities and the particle fluxes 
are defined by the partial current densities j, = r/n.jV; and je = -~cn,eve in terms 
of the charges q, e and fluid velocities Vj, ve for the ion and electron fluids. 

The first moment of the Boltzmann equation yields momentum equations 
for each species. The momentum equations arc written in divergence form. 

(I) dt - + — Pi I V qrii      mi     ) 
q2ni^     q .     ^      q „ 
m,          rrii                 rrii 

dt (^ + -P,l) V ene      me      / 
e ne„       e  .       _       e ^ 

= -E jt x B + —R 
me          me                 me 

(5) 

where E and B are the electric and magnetic fields, pi and pe arc the ion and 
electron partial pressures, and RKi is the electron to ion momentum transfer 
vector. 



The second moment of the Boltzmaiiii equation yields energy equations for 
eacli species which arc expressed in divergence form for the total energy. 
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where the total energy is defined by 
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(9) 

where 7 is the ratio of specific heats and Tj, Te arc the ion and electron tem- 
peratures. An adiabatic equation of state is assumed. The temperatures arc 
related to the partial pressures by pa = naTa for a — {i,e}. 

The equations that govern the ion and electron fluids are rewritten in com- 
pact, conservative form. 

dQ 
dt 

where Q is the vector of conserved fluid variables, F is the tensor of hyperbolic 
fluxes (Fx + Gy + Hz), and S is the vector containing the source terms. The 
vector of conserved variables is 

V   F (10) 

Q ["<• "t • Jz.r ) Jiy • Jiz ' J«T I Jey 1 Jez j Eii &e :n] 

for the number densities, electrical current densities, and energy densities. The 
flux Jacobian 3F/3Q for the two fluid equations is constructed in the usual 
way. The characteristic velocities arc calculated to construct the approximate 
Riemann fluxes. 

The eigenvalues of the flux Jacobian give the characteristic velocities. 

3i .1, 5 3£ 
3 rrit 

3ex 

en. 
3ex (12) 

The eigenvalues for the two fluid plasma model represent the combination of 
the drift speeds and thermal speeds for the electrons and ions. 

The electromagnetic fields influence the motion of the plasma fluid through 
the Lorcntz force which is contained in Eqs. (4) and (5). The motion of the 
plasma influences the evolution of the electromagnetic fields through the re- 
distribution of charge density and current density. Maxwell's equation govern 
the evolution of the electromagnetic fields.  The charge density qrii — ene and 



current density (j = j, + je) are calculated directly from the two-fluid equations 
which couple the electromagnetic fields. 

? = -VxE (13) 
ot 

dE 
eo-^ = VxB//io-ai+je) (14) 

eoV • E = qrii — ene (15) 

VB = 0 (16) 

In multiple dimensions the divergence constraints can be difficult to satisfy 
with the presence of current and charge sources on an arbitrary computational 
grid. The divergence constraints, Eqs. (15) and (16), arc satisfied by reformu- 
lating Maxwell's equations to include correction potentials. 

The approach involves coupling the divergence constraint equations with the 
time-dependent field equations to form a perfectly hyperbolic equation set. [6] 
The field equations are expressed as 

— +V xE + 7V </• = (), (17) 

^-c2V xB + *c2V0=--, (18) 
ot f(l 

1 dd>     _   _      Qfii — ene 
~^- + V-E = — -, (19 
X ot e0 

1   d-d' 
— -^- + V-B = 0, 20) 
7<r at 

where 0 and 0 arc the electric and magnetic correction potentials or, more 
formally, Lagrangc multipliers which vanish at the domain boundaries. The 
method more accurately predicts the propagation speed of the waves; how- 
ever, the method can overestimate the Lorcntz force caused by charge sepa- 
ration. The implementation illustrates the importance of tightly coupling the 
field solver to the fluid solver. 

The two-fluid plasma model (including the electromagnetic equations) can 
also be expressed in divergence form. 

-^ + VF = 5 (21) 
ot 

where Q is the vector of conserved fluid variables, F is the tensor of hyperbolic 
fluxes (Fx + Gy + Hz), and S is the vector containing the source terms. 

The hyperbolic fluxes are discretized using a Roe-type approximate Rie- 
mann solver. [1] In this method the overall solution is built upon the solutions 
to the Riemaim problem defined by the discontinuous jump in the solution 



ai  each cell interface.   The numerical flux at the cell interface's is written in 
symmetric form as 

Fl+l/2 = \ (fl+i + Ft) - J £ lk (Qi+i - Qi) |A,| rk 2 
k 

(22) 

where r/t is the A'"' right eigenvector, A/,, is the fc"1 eigenvalue, and lk is the 
h"' left eigenvector, evaluated at the cell interface (i + 1/2). The values at 
the cell interface arc obtained by a Roc average of the neighboring cells. The 
flux calculated as above is normal to the cell interface which is the desired 
orientation for applying the divergence theorem in a finite volume method. 

The eigenvalues and eigenvectors of the system flux Jacobians arc calcu- 
lated and properly normalized to prevent catastrophic cancellation. [21,22] A 
one-dimensional approximate Ricmann solver is developed based on the de- 
rived conserved fluxes. [2] Electromagnetic forces are exerted on the plasma 
fluids through the source terms and the fluid motion affects the fields through 
the source terms, as shown in Eq. (21). The hyperbolic fluxes arc computed 
accurately by the approximate Ricmann solver. 

Coupling the source terms to the hyperbolic fluxes is critical for accurate 
simulations. We have developed a wave propagation algorithm that using a 
Strang splitting method for the source terms. [23] The hyperbolic fluxes are 
computed with the approximate Ricmann solver. Limitcrs used on the hyper- 
bolic fluxes and Strang splitting result in a second-order accurate algorithm. 
However, in equilibrium situations where forces from electromagnetic fields bal- 
ance fluid pressure or convective forces, the contributions from the source terms 
must be accurately calculated to balance the divergence of the hyperbolic fluxes. 
Even small errors lead to a diffusive behavior. The source terms of Eq. (21) arc 
large, in general, which makes the equation stiff. 

2.3    High-Order Algorithm for Multiscale Physics 
An unsplit, finite-element algorithm is developed that can model the entire two- 
fluid plasma model, including the source terms, with a high spatial accuracy. [3] 
The algorithm uses a discontinuous Galcrkin spatial representation with a TVD 
Runge-Kutta time advance. [24-26] The discontinuous Galcrkin method is a 
finite element approach that allows for arbitrarily high order basis functions to 
model the variation of the system variables. Source terms are automatically 
coupled. The method currently uses up to sixteenth-order accurate spatial 
representation with a third-order accurate TVD Rungc-Kutta time advance 
method. The algorithm has been implemented for multiple dimensions and on 
parallel computer architectures. 

The conserved variables of the two-fluid plasma model are modeled with a 
set of basis functions, {v/,}. The governing equations, expressed as Eq. (21). 
arc multiplied by each basis function and integrated over the mesh cell volume 

10 



f2. An integral equation is generated for each basis function. 

f vh^dV+l   vhFdS- JF-VvhdV= I vhSdV (23) 

where the divergence theorem has been applied to the second term. The volume 
and surface integrals are replaced with Gaussian quadrature. The flux F is 
computed with the approximate Riemann solver with a limiter applied directly 
to the conserved variables to get high resolution. Less accurate Lax fluxes also 
typically produce adequate results with reduced computation. The source terms 
are described by the basis functions and are, therefore, the same order accurate 
as the solution variables. The high-order representation of the solution variables 
satisfies the accuracy requirement to preserve the equilibrium balance between 
the divergence of the hyperbolic fluxes and the source terms. Furthermore, the 
source terms arc directly included in the time advance of the solution variables, 
and no source splitting is necessary. 

The discontinuous Galcrkin algorithm has been applied to the electromag- 
netic plasma shock demonstrating the transition from gas dynamic shocks to 
the MHD shock [21,22] as the Larmor radius is reduced. Analysis of the data 
shows the differences caused by the additional plasma waves that arc captured 
in the two-fluid model and, consequently, in the algorithm developed here. [2] 
It also illustrates the dispersive nature of the waves which makes capturing the 
effect difficult in MHD algorithms. The electromagnetic plasma shock serves 
to validate the algorithm to published data (MHD limit) and analytical results 
(gas dynamic limit). The algorithm has also been applied to study collisionlcss 
rcconncction and the results arc compared to published results of the GEM chal- 
lenge (Gcospacc Environmental Modeling Magnetic Rcconncction Challenge) 
problem. [27] The problem is difficult to model and provides a rigorous test for 
the algorithm and benchmarks to other algorithms. The evolution of the re- 
connected magnetic flux compares remarkably well with the published data. [3] 
Additional applications arc discussed in more detail below. 

The electromagnetic field model includes divergence constraint relations, 
which if not accurately satisfied, can lead to nonphysical solutions. Special 
treatment is required because the divergence relations over-constrain the solu- 
tion. Satisfying the divergence constraint relations can be accomplished using 
a Hodge projection, which requires solving elliptic equations over the entire 
spatial domain, or by adding correction potentials to form perfectly hyperbolic 
equations, which requires solving additional hyperbolic equations to sweep the 
divergence error out of the domain, as described above. Alternative to these 
approaches, Maxwells equations can be formulated using scalar and vector po- 
tentials that automatically satisfy the divergence constraint relations. The 
mixed potential formulation is expressed as 

_ - VV = qnx - ene, -^ - V^A = j, + je, (24) 

assuming a Lorcntz gauge condition. The mixed potential formulation is im- 
plemented by solving the hyperbolic equations, given by Eq. (24), as a set of 

11 



Figure 2: Evolution of an axisymmetric, two-fluid Z-pinch with an initial small, si- 
nusoidal perturbation with four periods showing the ion density contours. Only the 
final stages of the evolution are shown; t = 25, 30, 35, 40, and 45. The perturbation 
remains small until late in time when the mode becomes unstable. The bending of 
the mode is an expected two-fluid result caused by the finite electron mass. Spatial 
scales are expressed in ion Larmor radii. rLi/a = 7.5. 

first-order hyperbolic equations by defining auxiliary variables. The gauge con- 
dition then becomes an algebraic expression in terms of the auxiliary variables. 
A related approach is to assume electromagnetic waves propagate instanta- 
neously, c —> oo, known as the Darwin approximation. [28] This approach has 
been implemented as part of the asymptotic approximations described above. 

2.4    Applications 

2.4.1     Multiscale Structures in a Z-pinch 

The algorithm has been applied to study hybrid plasma instabilities in Z-pinch 
geometries. [4] The results arc applicable to Z-pinchcs experimentally studied 
at UW and Sandia National Labs. An axisymmetric, two-fluid Z-pinch equi- 
librium is initialized with periodic boundaries in the axial direction. A 1%, 
sinusoidal perturbation of the azimuthal magnetic field is applied and the plas- 
mas dynamical response is followed. The effect of two-fluid physics can be seen 
by adjusting the normalized ion Larmor radius, ru/a, where a is the pinch 
radius. Figure 2 shows the evolution of the ion density for during the final 
stages of an instability; t — 25, 30, 35, 40, and 45. A four period perturba- 
tion is applied. The applied mode is seen to grow eventually entering into the 
nonlinear regime and finally plasma confinement is destroyed. The protruding, 
plasma bends downward due to an expected two-fluid phenomena — the finite 
electron inertia influences the ion density. 

When the plasma size is reduced, rn/a = 2.5, the plasma evolution changes 
dramatically as seen in Fig. 3. The ion density contours arc shown at t = 10 
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Figure 3: Evolution of an axisymmetric, two-fluid Z-pinch with an initial small, sinu- 
soidal perturbation with four periods showing the ion density contours. The earlier 
stages of the evolution are shown; t = 10 and 15. The plasma has rn/a = 2.5. The 
perturbation at t — 10 looks similar to Fig. 2. However, at t = 15 the four-period 
perturbation is overtaken by a shorter wavelength mode. 

and 15. The same equilibrium and perturbation have been applied, and the 
four-period perturbation is evident at t = 10. As the plasma evolves a shorter 
wavelength mode grows and quickly overtakes the initialized perturbation. The 
mode is independent of the initial perturbation. The wavelength is set by the 
Larmor radius. The simulation in Fig. 3 has ru/L = 10, so a ten-period mode 
develops. Furthermore, the finite electron inertia leads to the formation of 
shocks. 

Analyzing the results reveals the instability occurs when the electron drift 
speed exceeds the ion sound speed. The instability is related to the lower 
hybrid drift instability. [29] If the electron drift speed is kept below the ion 
sound speed, results similar to Fig. 2 occur if the equilibrium is MHD unstable. 
However, if the electron drift speed exceeds the ion sound speed, a mode similar 
to Fig. 3 occurs. This effect is not seen in MHD plasma models. 

2.4.2    Lower Hybrid Drift Instability in a Planar Plasma 

The algorithm has been applied to study hybrid plasma instabilities in field re- 
versed configuration (FRC) geometries. [5] FRCs are experimentally studied at 
AFRL and UW. The same effect is observed in planar current-carrying plasma 
sheets, which are neutrally stable in the MHD model. The simpler geome- 
try and stability properties better isolate the physical mechanism and allow a 
more thorough investigation. An axisymmetric, two-fluid equilibrium is initial- 
ized with periodic boundaries in the longitudinal direction. A single-period, 
sinusoidal perturbation of the density is applied and the plasmas dynamical 
response is followed. Results arc shown in Fig. 4. The spatial scales arc nor- 
malized by the ion Larmor radius.   The initial perturbation does not grow. 
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Figure 4: Electron density evolution of a current sheet at t = 100, 200, 250. Current 

is in-plane to the left with a confining magnetic field out-of-plane above and below 
the current sheet. The initial equilibrium is MHD stable, but develops a lower hybrid 
drift instability captured by two-fluid effects. By t = 200, perturbations with a scale1 

length of the ion Larmor radius are visible. The instability is fully developed by t = 
250. 

Instead, a perturbation with a scale length of the ion Larmor radius develops. 
The ions separate slightly from the electrons creating an electric field that im- 
pedes the current. The finite electron inertia leads to the formation of shocks 
that give the mode a "fishbone" character. 

As in the case of the Z-pinch, the instability occurs when the electron drift 
speed exceeds the ion sound speed, and if the electron drift speed is kept below 
the ion sound speed, instabilities do not develop. When the electron drift speed 
exceeds the ion sound speed, the mode shown in Fig. 4 develops even though 
the equilibrium is MHD stable. 

The instability simulated and identified has practical implications. The 
lower hybrid drift instability has been suspected as the cause of the "anomalous 
resistivity" in FRC experiments, particularly those using rotating magnetic 
field current drive. [30] Numerically computed effective impedance, shows an 
"anomalous resistivity" that agrees with the experimental observations and 
leads to cross-field transport. 

2.4.3    3D Instabilities in a Z-Pinch 

Gross three-dimensional instabilities in a Z-pinch have been studied. The Z- 
pinch results arc shown in Fig. 5. The Z-pinch equilibrium is expected to be 
unstable to gross MHD modes, such as the sausage mode (center plot) and kink 
mode (right plot). However, an additional, small-scale instability develops on 
top of the MHD modes. The instability is related to the lower hybrid drift 
instability. The small-scale structure shown in Fig. 5. is not captured in the 
Hall-MHD and MHD plasma models. 
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Figure 5: Election density evolution of a Z-pinch showing the development of a lower 
hybrid drift instability superimposed on the sausage and kink MHD modes. 

2.5     Conclusions 

A motivation for implementing the high-order discontinuous Galerkin method is 
to accurately capture the detailed spatial structure of plasma dynamics without 
necessitating large computational grids. Wc have investigated this ability by 
comparing solutions from the discontinuous Galerkin method with a second- 
order wave propagation method applied to a variety of hyperbolic problems — 
linear advection, electrostatic ion cyclotron waves, electromagnetic waves, and 
two-fluid plasma dynamics. The general finding indicates that for applications 
with a single characteristic speed or speeds with a limited range, the low-order 
method adequately captures the solution with substantially less computational 
effort. However, for applications with disparate characteristic speeds, the high- 
order method is better able to capture the solution without the phase errors 
that appear in the low-order method. 

The two-fluid plasma model resolves plasma oscillations and speed of light 
propagation. However, many applications arc adequately modeled by lower 
frequency dynamics. Asymptotic approximations (me —> 0, c —> oo) have been 
applied to the two-fluid plasma model to eliminate the high frequency waves 
that limit the maximum numerical time step. Applying these approximations 
fundamentally changes the dispersion relation and introduces unphysical wave 
behavior. Accurate simulations require large computational efforts. 

More accurate and less computationally intensive simulations arc possible 
using the two-fluid plasma model with reduced mass ratio and light speed. The 
high frequency dynamics captured by the two-fluid plasma model is modified 
by allowing the electron mass to increase, such that the mass ratio m,i/me is 
smaller than the physical value (1836 for hydrogen plasma). Wc have produced 
accurate simulations with mass ratios as small as 25. Increasing the mass ratio 
to 100 does not significantly alter the results. Similarly, the speed of light 
only needs to be much larger than the next fastest characteristic, typically the 
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Alfven speed. The ratio C/VA is approximately 1000 in experimental plasmas. 
However, we have produced accurate simulations with values as small as 10. 
These reduced values provide significant computational speed increases without 
a significant loss of accuracy. 
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